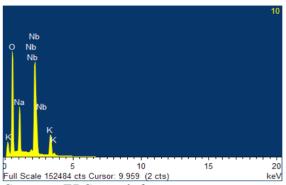
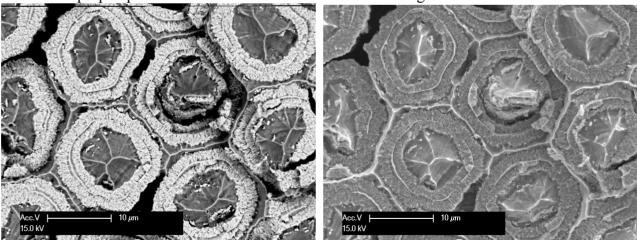

TEST INTERMEDIAIRE DE MICROSCOPIE ELECTRONIQUE


QCM, attention, dans certains cas, plusieurs réponses sont possibles.

1	Quel paramètre a un impact sur la taille de sonde?	1. L'énergie
		2. Le courant
		3. La distance de travail
		4. Le détecteur
2	Quelle information obtient-on en détectant des RX?	1. Un contraste en Z
		2. Un contraste en topographie
		3. Une concentration chimique
		4. Un contraste de diffraction
3	Pour obtenir un bon contraste en Z (pour n'importe quel Z) en SEM, quel détecteur faut-il utiliser ?	le détecteur d'électrons secondaires
		2. le détecteur Bright Field
		3. le détecteur EDX
		4. le détecteur BSE
		5. le détecteur EBSD
		6. le détecteur Dark Field
		7. le détecteur Everhardt-Thornley
4	Comment varie le taux de SE avec le numéro atomique de l'échantillon?	1. Il augmente jusqu'à Z ≈28 et est ensuite stable
		2. Il diminue continuellement
		3. Il augmente continuellement
5	Où sont produits les SE2?	1. Dans la chambre, autour de l'échantillon
		2. A la surface de l'échantillon, au point d'impact de la sonde
		3. A la surface de l'échantillon, mais pour tout le volume d'interaction
6	Les électrons rétrodiffusés détectés en SEM ont des énergies typiques de	1. moins de 50 eV
		2. 50-150 eV
		3. 250-500 eV
		4. plus de 500 eV
		5. variables selon la topographie de l'échantillon

7	La résolution spatiale d'une analyse EDX dépend de	1. la conductivité de l'échantillon
		2. la densité de l'échantillon
		3. l'énergie du faisceau d'électrons
		4. du type de détecteur utilisé (SE, BSE)
		5. du type de détecteur de RX (EDS, ou WDS)
		6. du paramètre de maille de l'échantillon
		7. de la dureté de l'échantillon
		8. de la raie spectrale considérée
8	Comment diminuer la profondeur de champ en SEM?	en augmentant le courant du faisceau incident
		2. en diminuant la taille de la sonde
		3. en diminuant la distance de travail
		4. en diminuant la taille du diaphragme
9.	A quel endroit du microscope on trouve le meilleur vide ?	1. sur l'echantillon
		2. au fond de la chambre
		3. dans la lentille objective
		4. dans le canon
		5. dans la pompe primaire
10.	Un MEB moderne a une résolution potentiel d'environ	1. 1 Angstroem
	percentage de environ	2.1 nm
		3. 10nm
		4. 1 um
11.	Quel aberration est facile à corriger?	1. aberration de sphéricité
		2. aberration chromatique
		3. astigmatisme
		4. champs électromagnétiques
		environnementaux (réseau 220V)
12.	Un FIB est utile pour	Découper de gros échantillons
		2. Faire du micro et nano-usinage
		3. Préparer des échantillons pour TEM
		4. Modifier la composition de l'échantillon
		5. Faire de la tomographie
		6. Métalliser des échantillons non- conducteurs


- Q13. Les trois spectres EDS ont été obtenus sur le même échantillon avec des tensions d'accélération différentes. Discuter ces spectres:
 - La forme des spectres, les pics observés.
 - La différence des hauteurs de pics (pour une composition chimique identique).

Spectres EDS pris à des tensions d'accélérations de a) 5 kV, b) 10 kV, c) 30 kV

- Q14. Deux micrographies d'un supraconducteur Nb₃Sn (figure suivante) ont été obtenues l'une en collectant les électrons secondaires, l'autre les électrons rétrodiffusés.
 - O Déterminer en observant chacune des images avec quel détecteur elles ont été obtenues.
 - Motiver votre réponse et développer les différences entres ces deux types de détecteurs.
 - Expliquer pour chacun des détecteurs l'influence de l'angle d'incidence sur le contraste.

Micrographies SEM d'un échantillon de filaments supraconducteurs Nb₃Sn.